2022年度以降学部1年生入学者向け__カリキュラムマップ【工学部】

1	į					専門科目							
学 年 期	教養科目	外国語科目	健康・体力科目	工学基	礎科目	機械·物質共通	機械システム分野	機械·電子情報共通	電子情報分割	管電子情報·物質共通	物質工学分野	共通·実験·実習科目	卒業研究
1	教養基礎セミナー1	基礎英語1	基礎スポーツ1	微分積分学はよび演習 線形代数1および演習 力学1および演習 化学1 物理学実験1・2	化学実験1 情報リテラシー CP基礎および実習1 エ学スタートアップセミナー							CAD基礎 工学リテラシー1	
年 2	教養基礎セミナー2 哲学入門	基礎英語2	基礎スポーツ2	機分積分学2および演習 線形代数2 確率・統計 力学2 電磁気学1および演習 化学2	物理学実験1・2 化学実験2 CP基礎および実習2 微分積分学1・演習(再履修) 線形代数1・演習(再履修) カ学1・演習(再履修)							工学リテラシー2 学外実習 I	
3	経済学入門世界と日本社会福祉入門	基礎英語3 英語コミュニケーション3 ドイツ語1 中国語1(前期)	基礎スポーツ3	複素関数 応用数学1 電磁気学2 熱力学		材料力学基礎 量子力学入門	図学と製図	CP応用および実習		でP応用および実習 電気回路工学1 量子力学入門	材料科学入門	創造性開発実習1 工学基礎実験1 現代工学概論1	
年 4	世界の歴史日常生活の法律問題	基礎英語4 英語コミュニケーション4 ドイツ語2 中国語2 中国語1(後期)	基礎スポーツ4	応用数学2		応用熱力学	大学 機構学	制御工学基礎	アルゴバムデータ構造 ソフトウェアエ学 ディジタル論理回路 応用電磁気学	電子回路工学 光学 量子力学1および演習	新晶工学 物理化学 分析科学 有機化学1	創造性開発実習2 データサイエンス実践集中演習 工学基礎実験2 現代工学概論2	
5	科学技術と倫理 心理学	英語テクニカルリーディング 実用英語 1	生涯スポーツ1			金属材料工学 数値計算法 統計力学	伝熱工学 流体解析 設計情報工学 機械振動学	数値計算法数値解析法(機械)システム工学現代制御理論メカトロニクス	離散数学 人工知能·深層学習実験1 通信工学 電気機器 電気回路工学2	半導体デバイス工学1 量子力学2 量子材料工学基礎 統計力学 物性工学1	カ学3 物質の電磁気学 有機化学2 無機化学	工学実験※注	
年 6		英語読解演習 英語デたかいプセンテージン 実用英語2	生涯スポーツ2			加工プロセス工学	熱エネルギー工学流体応用弾塑性力学設計演習機械加工学	C言語プログラミング コンピュータグラフィックス		情報理論 半導体デバイス工学2 ーエレクトロニクス 物性工学2	量子力学3 無機材料科学 高分子科学 生物工学 物質工学実験	トヨタ生産方式概論 創造性開発セミナー 技術開発特論 学外実習 II 学外実習 II	
7 4	教養基礎セミナー3 科学技術と倫理	英語テクニカルライティング 実用英語 1	生涯スポーツ3			トライポロジー		数値解析法(電子)	人工知能 信号処理	磁気工学	表面·界面科学	品質管理工学 経営管理工学 国際標準化戦略論 Intro.Enargy Conversion 特別講義	卒業研究1
年 8		英語読解演習 実用英語2	生涯スポーツ4									特別講義	卒業研究2

<ディプロマポリシー(工学部)>

- i 日本語による的確なコミュニケーション能力および英語等の外国語による基本的なコミュニケーション能力
- ii 物事に対して幅広い見方、論理的な考え方ができるとともに、説明できる能力
- iii データ科学を含む十分な工学基礎の知識を修得し、それを工学分野の学習に適用する能力
- iv 機械システム、電子情報および物質工学の各分野の基礎知識
- v 機械システム、電子情報および物質工学の各分野の少なくとも1分野の専門知識・技術
- vi 目標を把握し、創造性を発揮し解決策を立て、問題を解決する能力および協調してチームとしての目標達成に寄与することができる能力
- vii 修得した学識と能力を応用し、技術者の果たすべき役割と社会的責任を理解しつつ、研究を遂行できる能力

●枠色分けの説明各科目名の枠は左記のポリシーで該当する項目の色としている。

●マス色分けの説明

必修科目

機械システム分野(専門コア)

電子情報分野(専門コア)

物質工学分野(専門コア)

※注:「工学実験」の説明 共通の実験・実習科目かつ、各分野の主専攻科目に含む。